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A  Quantitative  Structure-Retention  Relationship  (QSRR)  is proposed  to estimate  the  chromatographic
retention  of 83  diverse  drugs  on  a Unisphere  poly  butadiene  (PBD)  column,  using  isocratic  elutions  at
pH  11.7.  Previous  work  has  generated  QSRR  models  for them  using  Classification  And  Regression  Trees
(CART).  In  this  work,  Ant  Colony  Optimization  is  used  as  a feature  selection  method  to  find  the  best  molec-
ular descriptors  from  a large  pool.  In  addition,  several  other  selection  methods  have  been  applied,  such
as Genetic  Algorithms,  Stepwise  Regression  and  the Relief  method,  not  only  to  evaluate  Ant  Colony  Opti-
hromatographic retention
CO
LR

VM
elief method

mization  as  a feature  selection  method  but  also  to  investigate  its  ability  to find  the  important  descriptors
in QSRR.  Multiple  Linear  Regression  (MLR)  and  Support  Vector  Machines  (SVMs)  were  applied  as  linear
and nonlinear  regression  methods,  respectively,  giving  excellent  correlation  between  the  experimental,
i.e.  extrapolated  to  a mobile  phase  consisting  of  pure  water,  and  predicted  logarithms  of  the  retention
factors  of  the  drugs  (log  kw).  The  overall  best  model  was  the  SVM one  built  using  descriptors  selected  by
ACO.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

For many years, the separation of drugs has been a critical and
mportant stage in analytical chemistry and pharmaceutical sci-
nce. One of the most applied techniques is High-Performance
iquid Chromatography (HPLC), which is able to analyze a wide
olarity range of acidic, basic and neutral compounds. High-
erformance Liquid Chromatography is well recognized as a
owerful, fast, selective and highly efficient technique, successfully
mployed for the separation and determination of many drugs [1].
o perform separations, a broad range of chromatographic station-
ry phases provide meaningfully different retention and selectivity.
owever, the mechanisms of retention are not always entirely
nown [2,3]. The choice of the stationary phase is very important
nd is based on user knowledge or on chromatographic tests to
elect columns with similar or dissimilar characteristics (selectivi-

ies).

The prediction of the physicochemical behavior of compounds,
uch as chromatographic retention, is useful for estimating, for

� This paper belongs to the Special Issue Chemometrics in Chromatography, Edited
y Pedro Araujo and Bjørn Grung.
∗ Corresponding author. Tel.: +32 24774723; fax: +32 24774735.

E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).

570-0232/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2012.01.012
instance, how well two  similar substances will be distinguished
in a given separation system, at the moment standards are not
(yet) available in the drug development process. Quantitative
Structure-Retention Relationship modeling has been utilized for
the prediction of retention and migration behaviors [4–9]. In the
resulting models a retention parameters is modeled as a function
of molecular descriptors. It should be noted that QSRR is a kind
of Quantitative Structure-Property Relationship (QSPR) study. Put
et al. [9] have performed Classification And Regression Tree (CART)
analysis as a QSRR study of the chromatographic retention of 83
drugs. CART selected three descriptors: a hydrophobicity parame-
ter (log P), the hydrophilic factor (Hy) [10] and the total path count
(TPC) [11] from 266 calculated descriptors, to predict chromato-
graphic retention. CART divided the retentions of the 83 molecules
into five classes called very low, low, intermediate, high and very
high retention [9].

In  the present study, we have performed regression instead
of classification. One of the most important stages, not only in
classification but also in regression, is feature selection. As many
pattern recognition and regression techniques were originally not
designed to cope with large amounts of irrelevant features (e.g.

given molecular descriptors), combining them with feature selec-
tion techniques has become a necessity in many applications
[12–14].  The application of feature selection methods has several
goals: firstly, to avoid overfitting and improve model performance;

dx.doi.org/10.1016/j.jchromb.2012.01.012
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:yvanvdh@vub.ac.be
dx.doi.org/10.1016/j.jchromb.2012.01.012
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Fig. 1. ACO representation of feature selection. Nodes a to f represent features. The
path  highlighted (in blue) indicates the path taken by one ant and the resulting
feature subset. The numbers on the edges are example of virtual pheromone. (For
M.  Goodarzi et al. / J. Chr

econdly, to provide faster and more cost-effective models; and
hirdly, to acquire a deeper insight into the underlying processes
hat generated the data, and to identify important variables that
ave an intuitive physical interpretation [15]. In this study we
ainly focus on the first two goals and less on the latter.
Recently, Swarm Intelligence has been used in different fields

f study for the purpose of feature selection [16]. One interesting
ethod is Ant Colony Optimization (ACO). ACO [16–18] is based

n the behavior of real ants that are capable of finding the shortest
oute between a food source and their nest by means of pheromone
eposition, without the use of visual information and hence pos-
essing no global world model, while being able to adapt to changes
n the environment. If a sudden environmental change occurs (e.g.

 large obstacle appears on the shortest path), the ants can respond
o this and will eventually converge to a new path. Based on this
dea, artificial ants can be deployed to solve complex optimization
roblems via the use of artificial pheromone deposition. ACO is par-
icularly attractive for feature selection as there seems to be no
euristic that can guide incremental search to the optimal subset of

eatures. Additionally, it can be the case that ants discover the best
eature combinations as they proceed throughout the search space.
he ACO-based Fuzzy-Rough Set feature selection method has been
pplied recently for the first time in QSAR [19], giving excellent
esults for a class of glycogen synthase kinase-3� inhibitors.

Another important item which affects the prediction ability
f any QSRR model is the choice of the regression technique for
orrelating descriptors with the experimental chromatographic
etention. The significance of simple Multiple Linear Regression
MLR) in QSAR and QSRR has received attention from the litera-
ure [20,21],  while accounting for non-linearity in the building of
SAR and QSRR models has also played an important role in the
ccuracy of activity and retention predictions, respectively [22,23].
t should be noted that in this study Support Vector Machines were
sed as nonlinear modeling technique. However, for the evaluation
f ACO and to assess the ability of other feature selection methods,
e have also used Genetic Algorithms (GAs), the Relief method and

tepwise Regression to select relevant variables in the construction
f different QSRR models.

. Theory

.1. Feature selection and Ant Colony Optimization

The main aim of feature selection is to determine a minimal
eature subset from a problem domain while retaining a suitably
igh accuracy in representing the original features. In real world
roblems feature selection is a must because of the abundance of
oisy, irrelevant or misleading features. The usefulness of a fea-
ure or feature subset is determined by both its relevancy and its
edundancy. A feature is said to be relevant if it is predictive for
he decision feature(s) (i.e. dependent variable(s) here retention
xpressed as log kw), otherwise it is irrelevant. A feature is consid-
red to be redundant if it is highly correlated with other features
for instance, different log P estimates may  be highly correlated).
ence, the search for a good feature subset involves finding those

eatures that are highly correlated with the decision feature(s), but
re uncorrelated with each other. However, the complexity of locat-
ng such a globally optimal subset of features is usually prohibitive,

hich motivates the use of more advanced search techniques, such
s ACO.

For ACO-based feature selection, the process begins with the

eneration of a number of ants, placed randomly on a graph that
epresents every possible combination of features. Here, each node
orresponds to a dataset feature and each edge permits the traver-
al of an ant from one feature to another (Fig. 1). An amount of
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

virtual pheromone (a real number in ([0,1]) is associated with each
edge that indicates the popularity of this particular traversal by past
ants. Ants then traverse the graph, making probabilistic decisions
as to which nodes to visit based on this virtual pheromone and also
a heuristic desirability measure, until a traversal stopping criterion
is satisfied. This is typically when the heuristic measure has reached
a pre-calculated global optimum for the data. If the criterion is not
satisfied, the virtual pheromone on the edges is updated based on
ant traversals, a new set of ants is created and the process iterates
once more. More details and definitions can be found in [17].

2.2. The Relief method

In the Relief method [24,25],  each feature is given a relevance
weighting that reflects its ability to discern between decision class
labels. It thus first was applied on classification problems. A user-
specified threshold determines the number of sampled objects used
for constructing the weights. For each sampling, an object x is
randomly chosen, and its nearest neighbor of the same class and
nearest neighbor of a different class are calculated. Based on these
neighbors, the feature weights are updated such that more weight is
given to features that discriminate the object from neighbors of dif-
ferent classes. The user must supply a threshold which determines
the level of relevance that feature weights must surpass in order
to be finally chosen. The method has been extended to enable it to
handle inconsistency, noisy and multi-class datasets [26]. Relief has
also been extended to handle continuous decision variables (e.g.
retention parameters). Instead of requiring the exact knowledge
whether two objects belong to the same class or not, which is not
applicable in regression problems, the relative distance between
the predicted values of two  objects (compounds) is used in order
to calculate feature weightings.

2.3. Support Vector Machine regression

Support Vector Machine (SVM) is a new and very promising clas-
sification and regression technique developed by Vapnik [27]. Here,
we give only a brief introduction to its main principle. Given a train-
ing data set of compounds {(x1, y1, . . . , (xl, yl)}l

i=1, where xi ∈ X ⊆ R
is the ith input data point in input space (a descriptor) and yi ∈ y ⊆ R
is the associated output value of xi (retention parameters). Initially
SVM considered classification problems of two classes. An SVM
model is a representation of the samples as points in space, mapped

in such a way that the two  classes are separated by a gap that is as
wide as possible. Because the classes are not always linearly sep-
arable in the initial data space (of the descriptors), the technique
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Fig. 2. The soft margin (ε-insensitive) loss function, c

onstructs a hyperplane in a high-dimensional space which allows
 linear separation of the classes (see further, kernel function).

Later an SVM version for regression was proposed, called Sup-
ort Vector Regression. When applied to regression problems a loss
unction is introduced. For example, quadratic, Laplace, Huber, and
-insensitive functions are four possible loss functions [27].

In Support Vector Regression, the goal is to find a function f(x)
hat has at the most ε deviation from the actually obtained targets
i for all the training data, and at the same time is a linear function
o link the nonlinear relationship between input and output data.
eviation larger than ε is not accepted. The function f(x), the SVR

unction, can be represented as follows

 (x) = wT �(x) + b (1)

here �(x) represents the nonlinear mapping of the training data
n the high-dimensional space, w are the coefficients and b the bias
erm (b can be dropped if the mean is zero). For more detailed
nformation on the estimation of w we refer to [27].

Fig. 2 shows the ε-insensitive loss function graphically. Three
arameters determine the quality: C, the parameter controlling the

rade-off between a large margin and less constrained violation, ε
hich is a precision parameter representing the radius of the tube

ocated around the regression function f(x), and the kernel function.

Fig. 3. The PCA score plot (PC1–PC2) of entire descriptor data set.
ing of support vectors (SVs), �, and ε for a linear SVR.

The kernel function used here is the Gaussian Radial Basis Function
(RBF) kernel:

k(xi, xj) = exp

(
−‖xi − xj‖2

2�2

)
(2)

where �2 denotes the width of the Gaussian kernel.
The parameters of SVM, i.e. C, �2, and ε were optimized by

systematically changing their values in the training step and cal-
culating the Mean Squared Error (MSE) of the model using 5-fold
cross-validation.

2.4. Model building

The 2D structures of the molecules of Table 1 were drawn using
HyperChem 7 software (Hypercube, Gainesville, Florida, United
States). Then the structures were first pre-optimized with the
Molecular Mechanics Force Field (MM+)  procedure. Final geome-
tries were obtained with the semi-empirical Austin Model 1
(AM1) method in Hyperchem, applying the Polak–Ribiere algo-
rithm until the root mean square gradient reached 0.001 kcal mol−1

[28]. The resulting geometry was transferred into the Dragon
program (Talete srl, DRAGON for Windows – Software for molec-
ular descriptors calculation, Milano, Italy, 2007) in order to
obtain 1497 descriptors, grouped in constitutional, Topologi-
cal, Geometrical, Charge, GETAWAY (Geometry, Topology and
Atoms-Weighted AssemblY), WHIM (Weighted Holistic Invariant
Molecular descriptors), 3D-MoRSE (3DMolecular Representation of
Structure based on Electron diffraction), Molecular Walk Count,
BCUT, 2D-Autocorrelation, Aromaticity Index, Randic molecular
profile, Radial Distribution Function, Functional group and Atom-
Centred Fragment classes [29].

The calculated descriptors were first analyzed for the existence
of constant or near constant variables, which were then removed. In
addition, to decrease the redundancy in the descriptor data matrix,
the descriptors’ mutual correlation and that with the retention of
the molecules was  determined. The collinear descriptors (i.e. r > 0.9)
were detected and those having the highest correlation with the
retention were retained, while the others were removed from the
data matrix.

The chromatographic data used were obtained from [9].  The
QSRR models were validated through leave-one-out and leave-25%-
out cross-validation, and external validation (with a test set), as

well as by a y-randomization test, in which the y-block was shuf-
fled, while the descriptors block was kept unaltered. The models
were statistically evaluated by the squared correlation coefficient
of the experimental versus predicted logarithms of the retention
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Table  1
Compound names and their experimental (Exp) and predicted log kw values from the ACO/MLR, GA/MLR, Relief/MLR, SR/MLR, ACO/SVM, GA/SVM, Relief/SVM, SR/SVM-based
QSRR  modeling.

No. Compounds Exp ACO/MLR GA/MLR Relief/MLR SR/MLR ACO/SVM GA/SVM Relief/SVM SR/SVM

1 Acebutolol 0.35 0.67 0.76 −0.07 0.64 0.25 0.25 0.25 0.45
2 Acetopromazine 2.93 3.06 3.15 3.32 3.15 2.97 2.95 3.03 2.9
3  2-Acetylphenothiazine 3.06 2.84 3.15 2.55 3.28 3.17 3.16 2.96 2.96
4a Alprenolol 1.72 0.90 0.96 0.14 1.20 1.38 1.02 0.48 1.25
5  Antazoline 1.89 1.67 1.47 1.01 1.53 1.79 1.74 1.79 0.89
6  Astemizole 3.51 3.06 2.79 3.69 3.36 3.41 3.61 3.61 3.41
7 Atenolol −1.05 −0.85 −0.38 −1.32 −0.92 −0.99 −0.41 −0.98 −0.95
8 Betaxolol 1.77 1.08 1.01 1.40 0.79 1.67 0.99 1.67 1.67
9  Bisoprolol 0.09 0.57 0.54 0.47 0.63 0.20 0.19 0.02 0.19

10  Brimonidine 0.17 0.06 0.17 1.11 0.25 0.14 0.07 0.27 0.27
11  Bupranolol 2.05 1.67 1.54 1.80 1.87 1.96 2.01 1.95 1.95
12  Carbamazepine 0.93 0.90 1.91 0.85 0.51 1.03 2.18 0.98 0.83
13a Carteolol 0.23 −0.13 −0.03 −0.29 0.27 −0.16 −1.14 −0.52 −0.26
14a Celiprolol 0.23 0.70 0.63 0.36 1.17 0.01 −0.37 0.95 0.16
15 Chloropyramine 2.77 2.19 2.16 2.52 2.37 2.62 2.51 2.67 2.81
16  Chlorpheniramine(+) 1.90 2.37 2.40 1.89 2.44 2.20 2.01 1.94 1.99
17a Chlorpheniramine(+/−) 2.04 2.37 2.40 1.89 2.44 2.20 1.88 1.94 1.99
18  Chlorpromazine 4.08 3.75 3.84 3.62 3.85 3.78 4.16 3.97 3.98
19  Chlorprothixene 4.23 4.52 4.66 4.79 4.10 4.33 4.33 4.13 4.33
20  Cicloprolol 0.57 1.09 0.85 0.54 0.77 0.67 0.67 0.47 0.47
21  Cimetidine 0.72 1.14 1.08 0.84 1.16 0.62 0.8 0.62 0.64
22a Cinnarizine 4.66 3.43 3.47 2.61 3.14 4.91 3.97 3.17 3.88
23  Cirazoline 1.58 1.33 0.45 1.16 0.98 1.48 1.48 1.48 1.68
24 Clomipramine 3.91 3.68 3.50 3.67 3.25 3.69 3.81 3.81 3.81
25  Clonidine 1.28 0.63 1.35 0.98 0.56 1.11 1.18 1.34 1.18
26  Desipramine 2.89 2.77 2.79 2.29 2.39 2.79 2.79 2.78 2.78
27a Detomidine 1.63 1.52 0.97 1.19 1.33 1.66 1.43 1.43 2.17
28  Dilevalol −1.26 −0.57 0.33 −0.21 −0.33 −0.24 −1.16 −1.16 −1.16
29 Dimethindene 2.24 3.12 2.89 2.64 3.23 2.34 2.61 2.34 2.14
30  Diphenhydramine 2.11 2.11 2.03 2.47 2.29 1.85 2.01 2.01 2.21
31 Doxazosin 2.82 1.63 1.97 2.16 1.84 2.72 2.72 2.72 2.72
32  Esmolol 0.92 0.83 1.16 1.05 0.81 1.02 0.82 0.98 1.02
33  Ethopropazine 4.18 3.49 3.74 4.35 4.19 3.70 4.08 4.08 4.08
34  Famotidine 0.19 −0.48 0.03 −0.08 −0.36 0.29 0.29 0.29 0.29
35  Fluphenazine 3.35 2.96 2.95 3.14 2.88 3.33 3.25 3.25 3.25
36 Imipramine 3.02 3.05 2.91 2.87 2.83 3.12 3.12 3.12 3.12
37  Indoramin 2.30 2.14 2.21 2.03 2.07 2.39 2.19 2.19 2.19
38 Isothipendyl 2.53 2.11 2.48 2.93 2.14 2.43 2.43 2.63 2.43
39  Ketotifen 1.95 2.98 2.79 2.29 2.80 1.85 2.19 2.05 2.05
40  Lofexidine 1.41 1.91 1.79 1.65 1.56 1.90 1.51 1.51 1.51
41  Medetomidine 2.52 1.82 1.23 2.30 1.61 1.90 2.12 2.41 2.41
42  Mepyramine 2.05 1.74 1.38 1.99 2.03 1.33 1.6 1.95 1.95
43 2-Methoxyphenothiazine 3.40 3.12 3.04 2.94 3.28 3.30 3.31 3.34 3.29
44  Metiamide 0.04 0.32 0.30 0.10 0.78 0.14 0.14 −0.05 0.14
45 Metoprolol −0.55 0.09 0.21 −0.18 0.12 −0.45 0.21 −0.45 −0.45
46  Moxonidine −1.12 −0.51 −0.56 −1.06 −0.49 −1.03 −1.02 −1.02 −1.02
47  Nadolol −0.64 −1.29 −0.93 −0.60 −0.94 −0.54 −0.74 −0.54 −0.54
48  Naphazoline 1.48 1.82 1.93 1.81 1.74 1.58 1.58 1.57 1.57
49  Nifenalol 0.07 0.39 0.28 −0.39 0.70 0.17 0.17 −0.02 0.16
50  Nizatidine −0.57 −0.35 −0.34 0.40 −0.76 −0.47 −0.47 −0.47 −0.47
51  Oxprenolol 1.22 0.95 0.82 0.68 1.19 0.15 1.12 1.12 1.11
52  Oxymetazoline 1.27 0.89 0.98 1.80 0.89 1.37 1.37 1.37 1.37
53a Perphenazine 3.07 2.18 2.54 2.91 2.35 2.94 2.17 2.86 3.01
54  Pheniramine 1.27 1.97 1.91 1.25 1.92 1.37 1.38 1.37 1.17
55a Phenothiazine 3.37 2.36 3.18 3.34 1.78 3.24 1.74 3.86 3.16
56  Phentolamine −0.83 1.44 1.34 0.20 0.87 1.63 1.60 −0.73 0.11
57  Pindolol 0.33 −0.13 −0.10 −0.52 −0.16 0.43 0.43 0.43 0.23
58  Pizotifen 3.46 3.81 3.48 3.46 3.71 3.36 3.36 3.36 3.55
59  Practolol −0.63 −0.30 −0.25 −0.79 −0.16 −0.53 −0.73 −0.64 −0.54
60a Prazosin 1.17 1.31 1.09 1.54 1.32 0.45 0.40 0.95 1.69
61a Prochlorperazine 3.52 3.02 3.19 3.28 3.32 3.48 2.89 3.29 3.58
62  Promazine 3.29 3.17 3.31 3.48 3.24 3.52 3.39 3.39 3.39
63a Promethazine 3.22 3.47 3.69 3.73 3.87 3.52 3.58 2.97 3.56
64  Propiomazine 3.49 3.24 3.41 3.19 3.11 3.39 3.39 3.39 3.39
65a Propranolol 2.04 1.36 1.78 1.59 1.99 1.63 2.07 1.84 1.64
66  Ranitidine 1.78 0.88 0.69 0.65 0.57 1.68 1.68 1.68 1.88
67a Roxatidine acetate 1.15 1.66 1.61 1.20 1.91 1.50 1.19 0.30 2.62
68  Sotalol −1.60 −0.87 −1.36 −1.06 −1.25 −1.50 −1.61 −1.50 −1.50
69  Terazosin 0.17 1.53 1.29 1.75 1.46 0.27 0.27 0.28 0.26
70 Tetryzoline 0.68 0.64 1.11 1.01 0.74 1.29 0.78 0.78 1.25
71 Thioridazine 4.65 4.98 5.39 4.06 5.11 4.55 4.75 4.55 4.55
72  Thiothixene-cis 2.77 3.22 2.59 2.62 2.79 2.67 2.67 2.67 2.67
73a Tiamenidine −0.23 −0.17 0.30 −0.04 −0.21 1.08 −0.27 −0.26 0.78
74  Timolol 0.17 −0.59 −1.24 −0.35 −0.46 0.27 0.07 0.07 0.27
75 Tolazoline −0.06 −0.19 0.08 0.14 −0.15 0.04 0.04 0.04 −0.16
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Table 1 (Continued)

No. Compounds Exp ACO/MLR GA/MLR Relief/MLR SR/MLR ACO/SVM GA/SVM Relief/SVM SR/SVM

76 Trifluoperazine 3.63 3.94 3.76 3.78 3.92 3.83 3.73 3.73 3.73
77  2-Trifluoromethylphenothiazine 4.80 4.17 3.89 4.59 4.44 4.70 4.70 4.70 4.70
78 Triflupromazine 4.12 4.32 4.09 4.50 4.39 4.02 4.02 4.11 4.22
79a Trimeprazine 3.51 3.48 3.72 3.44 3.63 3.67 3.78 3.52 3.75
80  Tripelennamine 1.81 1.68 1.40 2.01 1.83 1.71 1.91 1.91 1.91
81a Triprolidine 2.62 2.55 2.22 2.16 2.20 2.38 1.75 3.07 2.00
82  Tymazoline 2.01 1.24 0.82 1.97 1.46 1.91 1.83 1.91 1.88
83  Xylometazoline 2.38 1.68 1.82 2.14 1.79 1.82 1.71 2.28 2.23

a Compounds used in test set (external set).

Table 2
Correlation matrix and multicollinearity parameters for the descriptors selected by the Genetic Algorithm.

Descriptors Descriptors Multicollinearity parameters

BEHm5 ATS6e Qneg Mor30m H4m PSA MLOGP Tolerance VIF

BEHm5 1 0.232 4.31
ATS6e 0.531 1 0.325 3.07
Qneg  0.319 0.210 1 0.357 2.80
Mor30m 0.004 0.000 0.038 1 0.948 1.05
H4m 0.400 0.187 0.428 0.006 1 0.413 2.42
PSA  0.153 0.001 0.404 0.026 0.352 1 0.310 3.23
MLOGP 0.103 0.150 0.051 0.014 0.015 0.219 1 0.445 2.24

BEHm5(BCUT descriptors): highest eigenvalue n.5 of Burden matrix/weighted by atomic masses; ATS6e (2D autocorrelation): Broto-Moreau autocorrelation of a topological
structure −lag 6/weighted by atomic Sanderson electronegativities; Qneg (Charge descriptors): total negative charge; Mor30m (3D-MoRSE descriptors): 3D-MoRSE-signal
30/weighted by atomic masses; H4m (GETAWAY descriptors): H autocorrelation of lag 4/weighted by atomic masses; PSA (Properties): fragment-based polar surface area;
MLOGP  (Properties): Moriguchi octanol-water partition coefficient (log P)

Table 3
Correlation matrix and multicollinearity parameters for the descriptors selected by Stepwise Regression.

Descriptors Descriptors Multicollinearity parameters

MATS1v GATS8e Qpos FDI Mor30m E3p H4m PSA MLOGP Tolerance VIF

MATS1v 1 0.626 1.59
GATS8e 0.047 1 0.714 1.40
Qpos 0.001 0.005 1 0.377 2.65
FDI  0.016 0.003 0.091 1 0.741 1.35
Mor30m 0.005 0.059 0.038 0.027 1 0.780 1.28
E3p  0.155 0.049 0.002 0.104 0.068 1 0.572 1.75
H4m  0.028 0.011 0.429 0.024 0.006 0.019 1 0.468 2.14
PSA  0.026 0.012 0.404 0.000 0.026 0.000 0.352 1 0.361 2.77
MLOGP 0.061 0.076 0.051 0.000 0.014 0.034 0.015 0.218 1 0.524 1.91

MATS1v (2D autocorrelation): Moran autocorrelation −lag1/weighted by atomic van der Waals volumes; GATS8e (2D autocorrelation): Geary autocorrelation −lag8/weighted
by  atomic Sanderson electronegativities; Qpos (Charge descriptors): total positive charge; FDI (Geometrical descriptors): folding degree index; Mor30m (3D-MoRSE descriptors):
3D-MoRSE −signal 30/weighted by atomic masses; E3p (WHIM descriptors): 3rd component accessibility directional WHIM index/weighted by atomic polarizabilities;
H4m  (GETAWAY descriptors): H autocorrelation of lag 4/weighted by atomic masses; PSA (Properties): fragment-based polar surface area. MLOGP  (Properties): Moriguchi
octanol-water partition coefficient (log P).

Table 4
Correlation matrix and multicollinearity parameters for the descriptors selected by Relief.

Descriptors Descriptors Multicollinearity parameters

X3Av BEHe5 MATS1p GATS5e Mor17m Mor27m Mor14e HATS5e MLOGP Tolerance VIF

X3Av 1 0.699 1.49
BEHe5 0.035 1 0.491 2.04
MATS1p 0.066 0.030 1 0.57 1.75
GATS5e 0.014 0.049 0.015 1 0.783 1.28
Mor17m 0.065 0.001 0.000 0.028 1 0.683 1.46
Mor27m 0.103 0.040 0.042 0.001 0.033 1 0.594 1.68
Mor14e 0.036 0.306 0.000 0.011 0.087 0.176 1 0.393 2.54
HATS5e 0.003 0.357 0.161 0.019 0.000 0.010 0.159 1 0.501 1.99
MLOGP 0.009 0.038 0.072 0.159 0.084 0.041 0.090 0.029 1 0.519 1.93

X3Av (Topological descriptors): Average valence connectivity index chi-3; BEHe5 (BCUT descriptors): highest eigenvalue n.5 of Burden matrix/weighted by atomic Sanderson
electronegativities; MATS1p (2D autocorrelation): Moran autocorrelation −lag1/weighted by atomic polarizabilities; GATS5e (2D autocorrelation): Geary autocorrelation
−lag5/weighted by atomic Sanderson electronegativities; Mor17m (3D-MoRSE descriptors): 3D-MoRSE signal 17/weighted by atomic masses. Mor27m (3D-MoRSE descriptors):
3
d
(

D-MoRSE signal 27/weighted by atomic masses; Mor14e (3D-MoRSE descriptors):3D-MoR
escriptors):  leverage-weighted autocorrelation of lag 5/weighted by atomic Sanderson ele
log  P).
SE signal 14/weighted by atomic Sanderson electronegativities; HATS5e (GETAWAY
ctronegativities; MLOGP (Properties): Moriguchi octanol-water partition coefficient
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Table  5
Correlation matrix and multicollinearity parameters for the descriptors selected by ACO.

Descriptors Descriptors Multicollinearity parameters

SRW07 MATS1v GATS8e Mor30m H4m PSA MLOGP Tolerance VIF

SRW07 1 0.827 1.21
MATS1v 0.000 1 0.864 1.16
GATS8e 0.018 0.047 1 0.751 1.33
Mor30m 0.110 0.005 0.059 1 0.789 1.27
H4m 0.003 0.028 0.011 0.006 1 0.604 1.65
PSA  0.003 0.026 0.012 0.026 0.352 1 0.445 2.25
MLOGP 0.064 0.061 0.076 0.014 0.015 0.218 1 0.593 1.69

SRW07 (Molecular walk counts): self-retuning walk count of order 07; MATS1v (2D autocorrelation): Moran autocorrelation −lag1/weighted by atomic van der Waals volumes.
G erson electronegativities; Mor30m (3D-MoRSE descriptors): 3D-MoRSE signal 30/weigthed
b y atomic masses; PSA (Properties): fragment-based polar surface area; MLOGP (Properties):
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Table 6
Statistical parameters for the GA, SR, Relief, and ACO feature selection methods.

Parameters Methods

GA SR Relief ACO

S 0.691 0.596 0.526 0.620
R  0.915 0.940 0.954 0.932
Sloo 0.783 0.716 0.636 0.718
Rloo 0.890 0.913 0.932 0.909
Rl-25%-o 0.791 0.837 0.875 0.850
Sl-25%-o 1.083 0.990 0.862 0.952
Sval 0.726 1.158 1.163 0.832
Rval 0.932 0.858 0.882 0.921
Srand 1.269 1.202 1.239 1.310
S̄rand 1.620 1.623 1.623 1.624
Fit  2.632 2.927 3.867 3.40

T
S

ATS8e (2D autocorrelation): Geary autocorrelation −lag 8/weighted by atomic Sand
y  atomic masses; H4m (GETAWAY descriptors): H autocorrelation of lag 4/weighted b
origuchi octanol-water partition coefficient (log P).

actors (log kw) for the calibration and test sets (r2 and q2), the Root
ean Square Errors of calibration and external validation (RMSE),

he Relative Standard Error of Prediction (RSEP), the Mean Abso-
ute Error (MAE), Fischer test (F), t-test, Predicted REsidual Sum
f Squares in y (PRESS), and the Total Sum of Squares (SST). It
hould be mentioned that RMSE is used for all the feature selection
ethods.

. Results and discussion

.1. Linear models

It is common practice to calculate large numbers of molecular
escriptors to construct regression models for (bio)activity, reten-
ion or other properties. However, this makes the use of the well
nown MLR  modeling impracticable, interpretation difficult, and
oes not avoid descriptor collinearity. Thus, variable selection is an

ndispensable task for the building of simple, predictive QSPR mod-
ls. The recently implemented ACO method has demonstrated to be

 valuable tool for this purpose [19], and was applied here to reduce
he number of calculated Dragon descriptors (1497 descriptors)
o just a few representatives. In addition, other feature selection
echniques have been applied in order to evaluate the efficacy of
CO.

When building a QSRR model for retention two approaches are
ossible. Either one includes only descriptors with well known
hysicochemical properties to be able to explain the models

nd the importance of the descriptors in it. Else one can built
odels starting by selecting the theoretical descriptors from a

arge pool. The theoretical descriptors can not always evidently
e linked to given properties but the quality of the obtained

able 7
tatistical measures obtained for the different QSRR models. The SVM parameters used in

Measure Set ACO GA 

MLR  SVM MLR 

RMSE Training set 0.58 0.41 0.65 

Test  set 0.59 0.44 0.51 

RSEP(%) Training set 25.02 17.57 27.89 

Test  set 23.38 17.55 20.41 

MAE(%) Training set 8.28 5.70 8.62 

Test  set 17.05 14.19 16.65 

R2 Training set 0.87 0.94 0.84 

Test  set 0.85 0.89 0.87 

PRESS  Training set 22.68 11.19 28.21 

Test  set 5.54 3.12 4.22 

SVM  parameters
C 100.00 

�  0.001 

ε 0.10 

#SVs 63 
models is evaluated by their model-fit and predictive-properties
describing parameters. This latter approach was followed in this
paper.

Firstly, the dataset was  split into two, a training set and test set.
The training set comprised 67 compounds and the test set 16, i.e.
80% and 20% of the full data set, respectively. In fact, it was also
taken into account that the training set covers the test set domain,
which is checked for the descriptors by principal component anal-
ysis (PCA, score plot) and by the log kw range for the retention data.
The ranges of log kw are from −1.6 to 4.8 and from −0.26 to 3.88 for
the training and test sets, respectively. Fig. 3 shows the PC1–PC2
score plot, from PCA performed on the autoscaled descriptors. The

results indicate that the training and the test sets cover the entire
data set.

 the models also are given.

SR Relief

SVM MLR  SVM MLR  SVM

0.40 0.55 0.21 0.48 0.09
0.74 0.71 0.59 0.71 0.62

17.22 23.64 8.89 20.86 4.09
29.29 28.17 23.54 28.31 24.88

5.53 8.05 4.44 7.49 3.73
19.03 18.11 16.94 16.98 17.02

0.94 0.88 0.98 0.91 0.99
0.86 0.74 0.81 0.78 0.83

10.74 20.26 2.87 15.77 0.61
8.69 8.04 5.61 8.12 6.27

78.15 80.15 110.87
0.07 0.09 1.00
0.10 0.10 0.10

61 60 58
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ig. 4. The correlation coefficients of calibration (R) and leave-one-out (Qloo), the ro
he  model complexity.

Then, feature selection was performed based on the training set
ata to find the most important features. In this study we also used
enetic Algorithms, Stepwise Regression and the Relief method

or feature selection. There is no general rationale for a given fea-
ure selection method as being better for all datasets. Different
atasets have different properties, such as linearity/nonlinearity,
nd noise, which may  require different selections to describe given
roperties.

With the GA-based method, seven descriptors were selected and
he following MLR  equation obtained:

og kw (GA/MLR) = −4.73(±1.9) + 1.23(±0.79) × BEHm5

+ 0.00053(±0.005) × ATS6e − 0.45(±0.20)

× Qneg + 2.44(±0.79) × Mor30m

− 1.43(±0.70) × H4m + 0.03(±0.01)

× PSA + 1.09(±0.09) × MLOGP (3)

able 2 shows the correlation matrix of the selected descriptors,
heir tolerance and Variance Inflation Factor (VIF), which show that

ulticollinearity is not exhibited by the selected descriptors. If VIF
r tolerance assume values >10 or below 0.10, respectively, then
ulticollinearity is a problem. For VIF <5, no significant collinearity

s present [30].
Stepwise Regression which is a combination of Forward Selec-

ion and Backward Elimination was also performed for feature
election. The algorithm starts by selecting the independent vari-
ble (descriptors) which has largest correlation with the dependent

ariable (log kw); then that with the next highest correlation, and
ater incorporates a mechanism for eliminating earlier selected
ariables in the backward elimination phase in case these latter
re not significant anymore. Each epoch of the selection procedure
an squared error of calibration (RMSEC) and leave-25%-out (RMSECVl-25%-o) versus

comprises an inclusion phase followed by an exclusion phase. The
number of variables retained in the model is based on the levels of
significance assumed for inclusion and exclusion of variables. Nine
descriptors were selected by Stepwise Regression and the following
equation was  obtained.

log kw(SR/MLR) = 5.49(±2.91) − 6.04(±1.61) × MATS1v

+ 0.50(±0.21) × GATS8e − 0.32(±0.172)

× Qpos − 7.05(±2.81) × FDI + 1.34(±0.75)

× Mor30m − 4.24(±1.68) × E3p − 1.21(±0.57)

× H4m + 0.03(±0.005) × PSA + 1.26(±0.08)

× MLOGP (4)

Table 3 shows details of the nine descriptors selected using
Stepwise Regression. This table also indicates that there is no
high correlation or multicollinearity (VIF <5 and Tolerance >0.1)
between the selected descriptors [31].

When the Relief method was applied, nine descriptors were
selected. Table 4 shows the description of the selected descriptors
and indicates that there is also no multicollinearity problem for
these descriptors (VIF <5 and Tolerance >0.1). The following MLR
equation was  obtained.

log kw(Relief/MLR) = −12.66(±1.60) + 27.18(±4.87) × X3Av

+ 2.50(±0.45) × BEHe5 − 4.77(±1.16)
× MATS1p + 0.76(±0.20) × GATS5e

+ 1.30(±0.29) × Mor17m + 1.47(±0.47)

× Mor27m − 0.91(±0.17) × Mor14e
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Fig. 5. Plot of experimental vs. predicted chrom

+ 2.58(±0.68) × HATS5e + 1.22(±0.07)

× MLOGP (5)

inally, ACO-based feature selection was performed and the follow-
ng MLR  equation obtained;
og kw(ACO/MLR) = −2.93(±0.31) + 0.00263(±0.001) × SRW07

− 5.37(±1.43) × MATS1v + 0.63(±0.21)
aphic retention log kw for the different models.

× GATS8e + 2.26(±0.77) × Mor30m

− 1.54(±0.52) × H4m + 0.0298(±0.005)

× PSA + 1.22(±0.07) × MLOGP (6)
The ACO optimization process converged to the seven descriptors
depicted in Table 5.

Table 6 shows the statistical parameters calculated for the dif-
ferent feature selections. R and S are the correlation coefficient
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Fig. 6. Residuals plot for the different models.
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nd standard deviation, respectively, of the training set, p is the

ignificance of the model, and Fit is the Kubiny function [32], for
hich the larger the value indicates the better the fit to the lin-

ar equation. It should be noted that leave-one-out (LOO) and
eave-25%-out (L-25%-o) cross-validation techniques measure the
internal validation of the developed QSRR upon inclusion/exclusion

of compounds. We  have also performed y-randomization, where
SRand is the smallest standard deviation from 100,000 cases of
randomization for the model. The S̄Rand is the average of the
100,000 y-randomization cases. Thus, as SRand > S and S̄Rand > S this
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ndicates that the obtained correlation is not fortuitous and results
n a real structure-retention relationship, i.e. it is not a chance cor-
elation.

When we compare the statistical parameters of the four feature
election methods employed in this study, all methods were able
o find relevant features.

In order to find the optimum number of descriptors from those
elected, for all feature selection techniques, models with differ-
nt complexities were built. First the model with one descriptor
as constructed and then descriptors were progressively added
ntil all were used, evaluating the model each time. Fig. 4 shows
he Root Mean Squared Error of Calibration (RMSEC), the Root

ean Squared Error of leave-25%-out (RMSECVl-25%-o), the correla-
ion coefficient (R), and the correlation coefficient of leave-one-out
ross-validation (Rloo) for all feature selection methods and all mod-
ls. The higher the numbers of descriptors used in the models the
ore suitable models are obtained, i.e. the best fitting models with

he best predictive properties. This is seen from the facts that R and
loo are continuously increasing, while the RMSE-values continue
ecreasing. A notable observation is that for all methods, a large

mprovement in prediction (large drop in RMSE-values) is obtained,
fter which the stopping criterion of the method has been met
since no more complex models were built). The figures also show
hat the built models do not seem to overfit the data (no increase
btained in the RMSE-values for the more complex models).

In order to find the most important descriptors in any of the
odels 1 to 4, standardization of the regression coefficients [33]
as performed.

One should take into account the size of the regression coef-
cients for their comparison in a modeling. This is difficult when
he variables are measured in different units. On the other word,
e cannot compare the size of the various coefficients because the

ndependent variables are measured on different scales and thus
odeled. Therefore we need either to scale the descriptors before
odeling resulting in a comparable coefficient or use a metric to

ompare the different coefficients to each other, which is the case
ere. Using standardized coefficients then helps to overcome this
roblem.

Standardized regression coefficients can be calculated as follow-
ng:

i = ˆ̌
i

(
si

sy

)
i = 1, . . . , k (7)

here Bi is the standardized regression coefficient, ˆ̌
i and si the

egression coefficient and the standard deviation of the ith inde-
endent variable, respectively, and sy is the standard deviation of
he dependent variable.

As a result the following ranking of the contributions to log kw

s achieved:

Model 1(GA/MLR); MLOGP
(0.913)

> PSA
(0.499)

> Qneg
(−0.192)

> BEHm5
(0.170)

>

H4m
(−0.167)

> Mor30m
(0.167)

> ATS6e
(0.010)

Model 2(SR/MLR); MLOGP
(1.053)

> PSA
(0.520)

> MATS1v
(−0.213)

> E3p
(−0.151)

>

H4m
(−0.140)

> Qpos
(−0.138)

> FDI
(−0.132)

> GATS8e
(0.128)

> Mor30m
(0.092)
Model 3(Relief/MLR); MLOGP
(1.020)

> Mor14e
(−0.341)

> BEHe5
(0.312)

> X3Av
(0.272)

>

Mor17m
(0.218)

> MATS1p
(−0.216)

> HATS5e
(0.215)

> GATS5e
(0.168)

> Mor27m
(0.163)
gr. B 910 (2012) 84– 94 93

Model 4(ACO/MLR); MLOGP
(1.018)

> PSA
(0.445)

> MATS1v
(−0.189)

> H4m
(−0.179)

>

GATS8e
(0.160)

> Mor30m
(0.154)

> SRW07
(0.105)

MLOGP (Moriguchi octanol-water partition coefficient (log P)) [34],
selected by all methods, is the most important descriptor in all
models for the prediction of log kw. Its selection is not a surprise
as was  already discussed earlier [9].  PSA also seems of a consid-
erable importance. It is selected by three of the four methods.
Again, its selection could be expected since it is a descriptor fre-
quently used in QSPR/QSRR modeling. The other descriptors are
usually less important and are fine-tuning the modeling and pre-
diction. This may  explain their diversity in the different models.
Even though these selectors are different in the different models,
they may  stand for similar properties and be thus related. How-
ever, as mentioned already higher, it is not our purpose to study
the individual descriptors. The Relief method, which did not select
PSA, required the selection of the highest number of descriptors to
model the retention. A notable observation is that the feature selec-
tion methods only select PSA and MLOGP as the two  last variables
before stopping. However, though PSA is important, this is not seen
from Fig. 4. The measured and predicted values for all compounds
from the different models are shown in Table 1.

3.2. Non-linear models

As mentioned before, several parameters need to be optimally
set for SVMs: controller of trade off C, � and ε-insensitive loss func-
tion. The models were built using the descriptors that were selected
by the different feature selection methods when building the linear
models. In this study we used 5-fold cross-validation and optimized
the values based on the accuracy (MSE) of the resulting model. Dif-
ferent values of C ranging from 1 to 500, of � ranging from 0.001
to 5, and for ε ranging from 0.1 to 5 are evaluated following a grid
search. When the values of C, � , and ε increased the mean squared
error of 5-fold cross-validation decreased. The best parameters for
� , C, ε, and the number of SVs obtained are presented in Table 7.
The results of the predictions by the nonlinear models constructed
by SVM using the different features selected by ACO, Relief, GA and
SR are shown in Table 7.

A crucial aspect for QSRR model development is validation. Gen-
erally, the most conclusive proof of the predictive capacity of a QSRR
model is from external validation. In this study both external and
internal validations are considered. For the evaluation of the multi-
variate calibration models, several statistical measures, described
previously, were used. Table 7 shows the parameters to evaluate
the quality of the constructed models. The following conclusions
can, for instance, be made based on the RMSE results. This table
shows that all techniques are suitable for feature selection since
they result in similar values for the different models, both for the
training and test sets. The descriptors selected by ACO combined
with SVM as modeling technique gave the best model (the RMSE-
values for both training and test sets are smallest and similar). It is
also better than the linear models since RMSE is smaller than for
the MLR  models.

Although Relief/SVM has the lowest RMSE value (0.09) for the
training set, for the prediction it is 0.62, which is not as good as
ACO/SVM with 0.41 and 0.44 for training and test sets, respectively.
Similar conclusions as from RMSE can be drawn from the other
parameters from Table 7.

Predictions for the external validation (test) set were carried
out using the calibration models, resulting in accurate predicted

log kw values, especially for the ACO/SVM model (r2 of 0.899 and
RMSEP of 0.441), as illustrated in Figs. 5 and 6. The residuals distri-
butions in Fig. 6 indicate the absence of systematic error. Both MLR
and SVM regression models gave very high correlation between
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[32] H. Kubiny, Quant. Struct. Act. Rel. 13 (1994) 285.
[33] N.R. Draper, H. Smith, Applied Regression Analysis, John Wiley & Sons, New

York, 1981.
[34] I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, Y. Matsushita, Chem. Pharm. Bull.
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experimental” and fitted/predicted log kw, with SVM notably
uperior, mainly for the training, less for the test set.

From Fig. 5 we also see that the calibration errors for the SVM
odels are always smaller than for the MLR  models. The very low

MSE errors when using the Relief and SR descriptors in SVM can
lso be seen. These are the techniques that selected the highest
umber of descriptors. It is possible that these models start to
verfit given their very low RMSE for the training set and the con-
iderably higher values for the test set. Also, the SVM models built
fter the elimination of the least important descriptors may  per-
orm generally better than the actual. For the models built with the
CO and GA descriptors the calibration errors are intermediate and

or the ACO/SVM model the predictions are best. For the GA/SVM
odel the prediction is worse, because many test set compounds

re predicted too low.

. Conclusion

In this study, Multiple Linear Regression and Support Vector
egression were used to build Quantitative Structure-Retention
elationships. Ant Colony Optimization, a Genetic Algorithm, Step-
ise Regression and the Relief method were used to select the most

mportant descriptors. The results indicated that ACO/SVM was the
est. For the linear models, the four feature selection methods lead
o similar results, although the selected descriptors were different.
or some SVM models, some feature selection techniques (Relief
nd Stepwise) seem to select too many descriptors possibly lead-
ng to an over-fitting to the training set data. From the selected
escriptors, MLOGP (Moriguchi octanol-water partition coefficient
log P)) is the most important for the prediction of chromatographic
etention log (kw) of drug compounds. This observation was also to
e expected from a chromatographic point of view.

Overall, all models behaved rather similarly regarding predic-
ion, so both linear (MLR equations) and nonlinear models (SVMR)
an be built to predict chromatographic retention of drug com-
ounds. A slight preference may  go to the ACO/SVMR model. The
CO method showed to be valuable for feature selection mainly

or SVM modeling, since few variables were selected from a pool
f descriptors, and models with good predictive properties were
btained.
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